Wiener Index Extension by Counting Even/Odd Graph Distances
نویسندگان
چکیده
Chemical structures of organic compounds are characterized numerically by a variety of structural descriptors, one of the earliest and most widely used being the Wiener index W, derived from the interatomic distances in a molecular graph. Extensive use of such structural descriptors or topological indices has been made in drug design, screening of chemical databases, and similarity and diversity assessment. A new set of topological indices is introduced representing a partitioning of the Wiener index based on counts of even and odd molecular graph distances. These new indices are further generalized by weighting exponents which can be optimized during the quantitative structure-activity/-property relationship (QSAR/QSPR) modeling process. These novel topological indices are tested in QSPR models for the boiling temperature, molar heat capacity, standard Gibbs energy of formation, vaporization enthalpy, refractive index, and density of alkanes. In many cases, the even/odd distance indices proposed here give notably improved correlations.
منابع مشابه
On the parity of the Wiener index
It is a known fact that the Wiener index (i.e. the sum of all distances between pairs of vertices in a graph) of a tree with an odd number of vertices is always even. In this paper, we consider the distribution of the Wiener index and the related tree parameter “internal path length” modulo 2 by means of a generating functions approach as well as by constructing bijections for plane trees.
متن کاملPeripheral Wiener Index of a Graph
The eccentricity of a vertex $v$ is the maximum distance between $v$ and anyother vertex. A vertex with maximum eccentricity is called a peripheral vertex.The peripheral Wiener index $ PW(G)$ of a graph $G$ is defined as the sum ofthe distances between all pairs of peripheral vertices of $G.$ In this paper, weinitiate the study of the peripheral Wiener index and we investigate its basicproperti...
متن کاملWiener Index of Graphs in Terms of Eccentricities
The Wiener index W(G) of a connected graph G is defined as the sum of the distances between all unordered pairs of vertices of G. The eccentricity of a vertex v in G is the distance to a vertex farthest from v. In this paper we obtain the Wiener index of a graph in terms of eccentricities. Further we extend these results to the self-centered graphs.
متن کاملWiener Index of a New Type of Nanostar Dendrimer
Let G be a molecular graph. The Wiener index of G is defined as the summation of all distances between vertices of G. In this paper, an exact formula for the Wiener index of a new type of nanostar dendrimer is given.
متن کاملA note on vertex-edge Wiener indices of graphs
The vertex-edge Wiener index of a simple connected graph G is defined as the sum of distances between vertices and edges of G. Two possible distances D_1(u,e|G) and D_2(u,e|G) between a vertex u and an edge e of G were considered in the literature and according to them, the corresponding vertex-edge Wiener indices W_{ve_1}(G) and W_{ve_2}(G) were introduced. In this paper, we present exact form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical information and computer sciences
دوره 41 3 شماره
صفحات -
تاریخ انتشار 2001